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NATIONAL AEBONAUTICS AND SPACE ADMINISTRATION 

" I C A L  NOTE D-64 

GRAPHICAL TRAJECTQRY ANALYSIS 

By Aaron S. Boksenbom 

SUMMARY 

A simple graphical method for two-body trajectory problems is pre- 
sented. 
straight lines. 
Coasting trajectories correspond to circles on the grzph. The transfer 
to new orbi.ts on impulsive thrust, planar and nonplanar, is constructed 
on the same map. Approximations for continuous thrust and for cases of 
almost circular orSits are shown. 

The one basic graph used is composed simply of circles and 
All features of trajectories appear on this map. 

Examples are given ror czs"s of iransfer to new orbits, optimization 
on the velocity increment AV, interplanetary trips, and some i -en&ez~w~C1~ 
problems. 

IDTRODUCTION 

There is a Wide variety of problems iii regard to the nature of 
orbits and trajectories of space flight ranging, say, from simple coast- 
ing paths to the optimization of thrust required for various missions. 
T'ne need thw exists for a quick, simple, and practicalm&hod of esti- 
mating trajectory conZlitimia en3 t.hmist reqzired fo r  many different 
types of cases. 

The purpose of this rzport is to present a simple graphical method 
for trajectory analysis that can be applied to many types of trajectory 
problems. The one basic graph used is composed simply of circles and 
straight lines. Many trajectory variables of interest appear on this 
graph in this rather simple manner. Coasting trajectories correspona to 
circles on the graph. 
thrust is constructed on the same map, almost like rr-alistic vector addi- 
tions. Nonplanar thrust can be included. 

The transfer to a new trajectory on impulsive 

The graphical method of refercnce 1 imo1-ves charts that must be 
The method of reference 2 applies prepared and does not iaclude thrust. 

only f o r  e + O  m d  is close to the methods of this report for that 
case; it does not include thrust. 
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Because many differ3nt variables appear in a simple fashion on the 
map presented herein, there are a number of ways of enteriiig the map and 
many variables that can be read out simultaneously. This feature of the 
graphical method allows a l a r g e  n1lmher sf XT2erent types of problems to 
L e  arlaiyzed with the same basic graphical construction. Examples in the 
use of this graphical method are given in the present report for cases 
of transfers to new orbits; optimum velocity increment AV; interplane- 
tary, escape, and capture trajectories; and some rendezvous problems. 

The simplicity of the graphical method suggests the possible use of 
its coordinate system in other types of trajectory analyses, such as in 
guidance problems or in general computer programing. 
of differential equations in this particular coordinate system is de- 
rived in the appendix. 

The complete set 

SYMBOLS 

A summary figure illustrating a general condition on any trajectory 
and the corresponding point in the X-Y map used for the graphical method 
is shown in figure l(a) with the major symbols used in this report. 
relate the position of the vehicle in space, the conventionalthree- 
dimensional geometry, shown in figure l(b), is used. 

To 

e eccentricity 

F thrust 

G gravitational constant 

g 

h 

local acceleration due to gravity, g = m/r2 

2' angular momentum, h = rVE = r 8 

i inclination of plane of motion 

K identifies time lines (fig. 16) 

M mass of central body 

m mass of vehicle 

R radius on X-Y map, R = hV/m 

r radial distance on trajectory 

r a apogee distance 

. 
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M 
0 
oj 
P 

c;’ 
V 
V 

r L  

rP 

t 

tP 

V 

VH 

VR 

AV 

X 

R 

unit 

A n 

E 

semilatus rectum 

perigee distance 

time 

time of perigee crossing 

velocity 

velocity comsonent i n  horizontal plane 

velocity component i n  radial direction 

velocity increment due t o  thrust ,  = d t  

abscissa of map used i n  graphical method, 

- 

X = hVH/GM = h2/GMr = rL/r 

x-1 

ordinate of map used i n  g r q h i c a l  method, Y = ~ v ~ , / G M  

path angle 

angle swept out by radius vector along t ra jec tory  

true anamaly, angle between direction of perigee and radius 
vector i n  plane of motion 

angle between planes of motion, before and arter iiilxst 
( f i g .  11) 

longitude of ascending node 

angle between ascending node and direct ion of perigee i n  
plane of motion 

vectors 

i n  direction of vector angular momentum 

i n  direct ion of ascending node 

i n  direction of radius vector 

i n  directi.on of velocity 
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S,Q,2 directions of fixed orthogonal coordinate system 

Special symbols 

( - )  indicates time derivative, d/dt 

(7 indicates vector 

(7 indicates uni t  vector 

(-1 * (-) 

(-)x(-> indicates cross product 

( I* 

indicates scalar  product 

used for specif ic  conditions as  noted i n  report  

ANALYSIS 

General Features of  Graphical Method 

The method consists of plot t ing t ra jec tor ies  on a graph with the 
abscissa X and ordinate Y given by 

where 

VH t o t a l  velocity component i n  horizontal plane (normal. t o  radial 
direction) 

. 

A 

e 
A A n a  

normal t o  r, i n  plane of motion; 0 = W; triad ^r, 8: C 
forins right-hand ort.'.lnf;crsl z.j.sCa 

VR 

h 

rL 

This choice of coordinate system for the graph makes the method simple 
and easy t o  a2ply t o  a large variety of problems for the following 
reasons : * 

velocity component i n  radial direction 

magnitude of angular mmentum, h = rVE 

magnitude of semilatus rectum, rL = h2/GM 
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. 

(1) For every point on any trajectory, there i s  a corresponding 
point on the graph. 
ing curve traced out on the graph. 

Along any actual trajectory,  there i s  a corrzspond- 

( 2 )  For any coasting trajectory,  the correspondhg curve on the 
graph i s  a c i r c l e  centered a t  the point 
t o  the eccentricity of the t ra jectory.  

X = 1, Y = 0 of radius equal 

(3 )  Many other t ra jectory variables are d i rec t ly  and simply related 
t o  the X-Y coordinate system: 

( a )  Lines of constant e and cp form a polar coordinate 

(b)  Lines of constant hV/GM and r form another polar co- 

system centered a t  the point X = 1, Y = 0.  

ordinate system centered a t  the point X = 0, Y = 0. 

( c )  The rad ia l  distance on the t ra jectory r i s  related t o  
the abscissa, a s  X = h2/GNr. 

7 IT  . 

energy, a re  c i rc les  -with center a t  
which go t.hrough the point. 

(d)  Lines of constant rV'/M = 2 + 2Er/GM, where E i s  
X = rV2/2GM, Y = 0, a l l  of 

X = 0, Y = 0 .  

(4) For noncoasting t ra jector ies ,  there i s  a re la t ive ly  simple con- 
s t ruct ion on the graph for  cases o f  both impulsive and continuous thrust. 

In  the appendix, the d i f fe ren t ia l  equations fo r  the path i n  the 
X-Y plane a re  derived i n  order t o  show the  general nature of the corre- 
spondence between any actual  trajectory and i t s  corresponding curve on 
the  graph. For zero thrust, the d i f fe ren t ia l  equation is  

(x - 1)dx + Y dY =I 0 

whose solution is 

(X - 1)2 + Y' = Constant = e 2 

The expansion of the l e f t  side of t h i s  equation shows tha t  the constant 
i s  the square of the eccentricity.  
the eccentr ic i ty  e i s  shown i n  figure 2 .  For easy reference, the 
point X = 1, Y = 0 
X = 0, Y = 0 as point 0. 

The geometry i n  the X-Y plane for  

i s  referred t o  herein as point Q, and the origin 

It i s  w e d l  known tha t  the true anomaly cp can be obtained f'rom the 
following equation: 

- -  h2 - 1 + e cos cp 
GMr 
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which can be written ( X  - l ) / e  = cos rp. The t rue  anomaly 'p, corre- 
sponding t o  the X,Y point on the graph, i s  i t s  angular rotat ion about 
point Q ( f ig .  2 ) .  Thus, the trajectory variables e and 'p form a 
polar coordinate system centered a t  point Q on the graph, as shown i n  
figure 3. 

From the def ini t ion of X and Y it is  obvious that 

X2 + Y2 = (hV/GM)' 

and 

e 

Y/X = tan y.  

Thus, the t ra jec tory  variables hV/GM and y form another polar co- 
ordinate system centered a t  point o on the  graph. 
polar coordinate systems a re  superposed on the graph. 
construction, is  the basis for  the methods of this report .  

In  figure 4, the two 
This map, and i t s  . 

Figure 5 i s  the same map with the detailed gr id  l i nes .  A l l  vari- 
ables on the map a re  dimensionless. The unit distance should be chosen 
t o  give good accuracy fo r  the particular problem a t  hand. 
lieves tha t  many t ra jectory problems can be aol-;ed k5th the ai3 of t h i s  
map. O f  course, a compass, straight-edge, scale, and protractor are  
suf f ic ien t  without the a i d  of the grid guide l ines .  

It i s  be- 

Because of the many variables that appear on the map of figures 4 
and 5, there arz  many difrerent  ways o f  entering the graph and many vari-  
ables that can be read out simultaneously. This feature of the map means 
that a large number of different  types of problems can be analyzed with 
the same map o r  construction. In a l a t e r  section, it i s  shcwn t h a t  ad- 
d i t iona l  curves can be placed on t'ne map t o  allow still  more different  
ways of entering the graph and more variables that can be read out. One 
such family, mentioned previously, axe l i nes  of constant 
a r e  c i rc les .  

rV2/GM, which 

Coasting Trajectories 

For zero thrust ,  the eccentricity i s  constant. Thus, a l l  coasting 
t ra jec tor ies  correspond t o  c i rc les  on the graph. All circular  coasting 
orb i t s  correspond t o  point Q. 
respond t o  the c i rc les ,  centered a t  point Q j  of r a d i i  from 0 t o  1. The 
parabolic coasting o rb i t  ( e  = 1) corresponds t o  the uni t  c i r c l e  on the 
graph. 
greater than 1. 
Y-axis gives the asymptotic conditions as r t w .  

Ell ipt ic  coasting orb i t s  (0 < e < 1) cor- 

Hyperbolic coasting orb i t s  (e  > 1) correspond t o  c i rc les  of r a d i i  
These c i rc les  do not close; t h e i r  intersection with the 
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As dcp = de for zero thrust  (appendix) and the def ini t ion of 8 
requires that 
t ra jectory i s  always counterclockwise. 
i n  figure 6 with, say, e = 0.5 corresponding t o  the path on the graph 
from points 1 t o  2.  
out by the radius vector along the trajectory.  A s  the  angular momentum 
h i s  also constant, the radial distance on the  t ra jec tory  i s  inversely 
proportional t o  X, and r2/rl = XI/%. Also, it i s  apparent that the 
X axis t o  the r igh t  of point Q is the locus of perigees and t o  the l e f t  
of point Q i s  the locus of apogees. The r ad ia l  distance R on the map 
t o  the origin i s  hV/GM. 
portional t o  R, and Vz/Vl = R2/R1. The path angles on the t ra jec tory  
yl and r2 appear direct ly  on the graph of figure 6. 

d@/dt h 0, motion on the graph corresponding t o  a coasting 
Consider the coasting t ra jectory 

The angle (1, Q, 2 )  i s  O2 - el, the  angle swept 

Thus, the velocity on the t ra jectory i s  pro- 

A s  another example, suppose a s a t e l l i t e  i s  t o  be injected in to  
orb i t  with an eccentricity e = 0.25. 
dit ions correspond t o  the c i rc le  of e = 0.25 on the graph of figure 7. 
If the burnout path angle i s  also specified, say loo, then burnout cor- 
responds t o  t5e intersection on the nap of t'ne e = 0.25 c i r c l e  and the 
y = loo l ine .  
points 1 and 2 .  
could be specified. 
be no intersect ion between the e-circle and the y-line i n  figure 7. 
t h i s  example and those i n  l a t e r  sections, such impossible cases and 
other t ra jec tory  ambiguities and s ingular i t ies  a r e  c lear ly  defined by 
the use of t?.ie X-Y plane. 

"hen the possible burnout con- 

Figure 7 shows a double-valued so2clt5.m for t h i s  case, 
There i s  &vfou;sly a. m_u+mum path angle a t  burnout t h a t  

If a greater path angle were specifle&, ';here w ~ d c Z  
In 

ikpulsive Thrust 

Planar thrust. - The same graph is eas i ly  adapted for  impulsive 
thrusts .  
di t ions on the t ra jectory before and a f t e r  bxuls ive  thrust, respectively. 
The vector between these two points i s  not 
h/GH i s  not necessarily constant. 
steps. A vectorlike addition of hlz/GN t o  point 1 gives an in te r -  
mediate point A; that is, 

the graph of figure 8, points 1 and 2 correspond t o  con- 

AV, as the scale factor 
The graphical construction i s  i n  two 

. 
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The lines i n  the t r iangle  (0, 1, A )  are  exactly l i k e  the vector addition 
of t o  T1, with scale factor hl/GM; the three vectors appear 
on the graph i n  r e a l i s t i c  re la t ion  t o  each other and t o  t h e  fixe? 
uni t  vectors, a s  shz:,~ sii sketch i n  figure 8. 

,o ' 
Points A and 2 l i e  on the same r2 l ine .  A simple re la t ion  be- 

With 

Point 2 on the graph i s  then the 

tween points l, A, and 2 i s  obtained by noting that 

t h i s  construction, point 2 can be found, given point 1 and a; or E 
can be found, given points 1 and 2. 
s tart  Df a new coasting path along the c i r c l e  (e = const.) on which it 
l i e s .  

X i  = XIXz. 

sj 
tb 
4 
(D 

It i s  helpf'ul t o  note the relat ions between going from points 1 t o  
For the lat ter case, t5e first step i s  2 and going f'rom points 2 t o  1. 

a vectorlike addition of 
point B; that is, 

-(h&/GM) to point 2, giving the intermediate 

Points B and 1 l i e  on same y1 l i n e .  The re la t ion  between points 1, B, 

and 2 i s  the same a s  before, as 

tha t  is ,  

The construction for  both forward and backward impulsive thrust i s  
XA = XB shown i n  figure 9. 

p a r a l l e l  gives a fur ther  a id  i n  the graphical construction. 
s t a r t i ng  a t  point 1 and adding hlE/ilGM give point A and the yz l ine .  
The intersection of the XA ve r t i ca l  l i n e  and the yl l i n e  gives 
point B. Drawing a l i ne  through point B, pa ra l l e l  t o  the l i n e  IA, gives 
point 2 as I t s  intersect ion with the y2 l i ne .  This construction would 
obviate the use of the formula The exception i s  the case of 
tangential  th rus t  where 
i n  t h i s  case, the formula X i  = X1X2 or RA = R1R2 can be used. 

The fac t  that and l i nes  IA and ZB are 
For example, 

2 XA = XlX2.  

yl = r2 and the figure IA2B l i e s  on a l ine;  
2 
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The values of the new o rb i t a l  elements, a f t e r  impulsive thrust ,  are 
self-evident. The eccentricity appears on the  map. The angular momentum 
is  given by 

i n  figures 8 and 9. 
given by 

The rotat ion of the polar axis of the t ra jectory i s  

a 2  - a1 = 'Pi - 'pz = Angle (2, Q, 1) 

i n  figures 8 and 9. 

Direction reversal, planar thrust .  - If, i n  the construction shown 
i n  figure 8, point A should l i e  t o  the l e f t  of the ver t ica l  axis, it 
means that the direction of motion has reversed. 
mirror image of point A i s  used on the rfght of the ver t ica l  axis t o  
coxplete tine constructioc i n  figure 8. Subsequent cmst ing i s  s t i l l  
eoimterclockwise on the map, but t he  sense of tne change i n  
versed. 
corresponding t o  the two mirror images for point A. 
would give the two types of t ra jector ies  sketched i n  figure 10. 

I n  t h i s  case, the 

8 i s  re-  - 
Also, given points 1 m e -  2 on the map, there a re  two AV's - 

These two AY's 

Nonplanar thrust. - If AV i s  not i n  the plane of motion, the  con- 
s t ruct ion i n  figure 8 s t i l l  holds i n  terms of (VzR - Vm) and (VZH - Vm) .  

While (Va - V m )  i s  s t i l l  the rad ia l  component of AT, the quantity 
(VZH - v m )  i s  zot a rnqonent of AV. 
quired t o  obtain th i s  quantity. 
map of figure 11. 
i t y  diagram i n  the horizontal plane. 

c z  The vector l i n e  CD represents 
the t o t a l  component of the impulse i n  th,e horizontal plane. 
l i n e  OD represents VzR, i n  direction 82.  The length OD equals XA 
and must be transferred t o  X - a x i s  as shown i n  figure 11. 
i s  that between the two planes of motion, b e f x e  and a f t e r  thrust .  
the  map, the vector l i n e  1E represents the t o t a l  Component of the 
impulse i n  the i n i t i a l  plane of motion. 

- 
-7 A separate construction i s  re- 

This construction i s  shown b e l s ~  t h e  
This separate construction i s  essent ipyAtheAveloc-  

el, G 2 ,  hl, and 

The vector 

The uni t  vectors 
a re  shown t o  ident i fy  directions. 

The angle 9 
On 

Directian reversal, nonplanar thrust .  - If, i n  the construction 
shown i n  figure 11, the point E should l i e  t o  the l e f t  of  the ve r t i ca l  
axis,  it means - as i n  the case of planar th rus t  - that the direction 
of motion has reversed. In  t h i s  case, the mirror image of point E i s  
used on the r igh t  of the ver t ica l  axis t o  complete the construction i n  
figure 11. Subsequent coasting i s  s t l l l  counterclockwise on the map, 
b u t t h e  sense of the change i n  8 i s  reversed. 
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Now, given points 1 and 2 on the map, XA is uniquely determined by 
Xi = X1X2. 
OD equals XA. 
XA ?.rx?d 5;sliii 6. There are thus an infinite number of possible Av's 
as the angle between the two planes $ varies from Oo to 360'. For 
90' < $ < 270°, point E lies to the left of the vertical axis corre- 
sponding to the direction reversal. 

On the construction below the map of figure 11, the length 
Thus, point D can lie anywhere on the zfrclc: UT length 

Continuous Thrust 
P 

One way of handling a continuous thrust by the graphical procedure 
just presented is to approximate the continuous thrust by a series pulse- 
coast-pulse-coast-etc. Figure 12 shows the construction of a pulse- 
coast and of a coast-pulse beginning at the same point 1. Path LA23 is 
pulse lA2 and then coast 23. Path 14B5 is coast 14 and then pulse 4B5. 

It seems that the pulse-coast-etc. approximation should be made 
relative to the time integral of thrust-mass ratio. 

component of 1; dt. The approximate pulse-coast curve is the step 
function shown in figure 13. For this step f'unction, horizontal parts 
are coasts, and vertical steps are the magnitudes of A? pulses. The 
abscissa scale may be time or position. 

. 
Figure 13 shows a 

b 

In the appendix, the general exact differential equations for the 
path in the X-Y plane a r e  derived. They are : 

where g is the local acceleration due to gravity, g = a/$. These 
equations are valid for general three-dimensional motion. Note that the 
component of thrust normal to the instantaneous plane of motion does not 
appear; this component merely rotates the plane of motion. 
equations, the independent variable is 
radius vector along the trajectory. Elapsed time, if required, is ob- 
tained from a 

In these 
e, the angle swept out by the 
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Thus, a gross approximation i s  obtained as shown i n  figures 12 and 13, 
and an exact form i s  given by the preceding d i f f e ren t i a l  equations. 
Further analysis for continuous thrust i s  beyond the scope of t h i s  
report .  

Almost C i r c u l a r  Orbits, e + O  

M 
0 
ld 
n. 
N 
I 

It was noted previously that a l l  variables on the  map of figures 
4 and 5 are  dimensionless and t h a t  the unit distance should be chosen 
t o  give good accuracy for the particular problem a t  hand. 
of e +O, an expansion of the map i n  the region of the point Q is 
needed. In t h i s  regioa the  c i rc les  centered a t  point 0 are almost 
ver t ica l  l ines ,  and the rays from point 0 a r e  almost horizontal l ines .  
Thus, a single s e t  of polar coordinates suffices;  the horizontal- scale 
gives both r and V, and the ver t ica l  scale gives y. 

For the case 

The approximate map for  cases where e + O  i s  shown i n  figure 14. 
It i s  corivexient t o  introduce the variable6 r* and p, which essen- 
t i a l l y  i-eplace the scale factor h/GM. These variables a r e  the r a d i a l  
distance and approximate velocity when cp = 90°, a kind of average 
conditions. 

The construction for  impulsive @rust is shown i n  figure 15. The 
vector from point 1 t o  point A i s  
point A such tha t  xl + 9 = 2xA. 
of a new coasting path along the circle  (e = const.) on which it lies.  

AV/V;. Point 2 l i e s  t o  the r igh t  of 
Point 2 on the map i s  then the start  

P-e cew scale factors are  given by 

The angle (2,&,1) i n  iYgure 15 i s  % - ult the rotat ion of the polar 

axis of the orbi t .  The value of velocity a f t e r  th rus t  i s  obtained fYom 

2[(V2 - V,)/vT] = xz - xl. The value of path angle a f t e r  thrust  i s  read 

d i rec t ly  from figure 15. 

Vertical Flight, h = 0 

This i s  the one case where the graphical method breaks down. The 
scale factor on both axes of figure 5 i s  
map degenerates i n to  the point 0. O f  course, the case h = 0, which i s  

h/GM, and, when h = 0, the 

. ver t i ca l  f l igh t ,  is  relat ively simple f o r  straightforward calculations. 
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APPLICATIONS 

Additional Curves For Map 

Squations for various families of curves. - For certain problems 
it may be convenient to have certain families of curves on the map of 
figures 4 and 5. A list of equations for same of these follows: 

= -  G ~ M ~  ay 
h3 

(1): - (t - tP) = Const.; 
h3 

rv2 all 
2GM' 

, radius = - ( 4 ) :  
rvz - - Const.; circles with center at 

. 
of which go through point ( 0 , O ) .  

Note that rV2/GM = 2 + 2Er/GM = 2 - r/a, where E is energy, 
V2/2 - GM/r, and a is magnitude of semimajor axis. 

X - Const.) bl ( 5 ) :  - -  
r (rv2/m) - 2 

where bl is impact parameter of hyperbolic orbits, h = blV(r + w ) .  

* * For the general condition r = r , 9 = cp , y = y*, and so forth, 

r 2 
r* 

r* 
r 

(6): -, y* of interest, as on reentry; X2 see2 y* - 2X - + 1 = e 

* r -1+ecoscp r* * 
r 1+ecoscp of interest; - - * ( 7 ) :  -I cp 

The only variable that really does not appear on tie nap of figure 
Thus, only the first of the preceding families of curves is 
The others may be convenient but, as shown in later examples, 

5 is time. 
necessary. 
are not strictly necessary. 

Time lines. - As just shown, lines of (G2M2/h3)(t - tp) = K can be 
Such a family of curves is sho-m in fig- placed on the may> of figure 5. 

ure 16. On this figure, lines of constant K are drawn symmetrically * 
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with respect t o  the X-axis. Thus, above the X-axis, going from perigee 
t o  apogee, K = (GzM2/h3)(t - tp), which gives time elapsed s i x e  the last  

perigee crossing. 
K = (G2Mz/h3)(tp - t),  whizh gives time t o  go t o  the next perigee cross- 
ing. 
from the points 0 t o  Q, K = ~ ( 1  - e2)-3/2, which indicates the half- 
period. 

Below the X-axis, approaching the perigee, 

Along the X-axis, t o  the r ight  of point Q, K = 0. Along the X-axis 

By using these curves, the time elapsed during any coasting phase 
i s  easi ly  obtained. 
path. 
following four cases: 

Figure 1 7  indicates four conditions along a coasting 
Considering the definit ion o f t h e  K-lines of figure 16  gives the  

( 3 ) !  

G ~ M ~ T  Note that KA = ~ ( 1  - e2)-3/2 where T is period of orb i t .  
h 2  

. - BY using tnese curves, iiie digiige fLri Lq or* hFdSiyc $,=dag 
eas i ly  obtained. 
before and a f t e r  impulsive thrust ,  then 

For example, if points 1 and 2 are points on the map 

where both points 1 and 2 a r e  considered t o  be above the X-axis. 
follows tha t  

It 
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Transfer To New Orbit 

Y 
tb 
4 
(D 

Suppose it i s  desired t o  burn a t  a def in i te  posit ion along o rb i t  1, 
say point l a  i n  figure 18, t o  t ransfer  t o  a new o rb i t  with parameters 
e2, h2. !Ren Xz 
of this X2 l i n e  with the e2 c i r c l e  deternines point Za. Point A a  
and the corresponding AV follow as i n  figure 8. 

i s  determined by Xz,/Xla = hE/h:; the intersect ion 

The angle (Za, Q, l a )  gives u2 - cul. For point 1 a t  various posi- 
t ions along the el c i rc le ,  t h i s  rotat ion of the polar axis w i l l  vary. a 

If, fo r  example, no rotat ion of the polar a x i s  i s  desired, then points 
Q r ' 2 ,  and 1 must l i e  on a s t ra ight  l ine .  

t o  transfer t o  o rb i t  with parameters 
ure 8. 
keep cu2 = ul i s  a l so  obtained. 

Such a l i n e  may be l i n e  Q-Zb- 
lb ,  which is such tha t  XZb/Xlb = h2/hl. 2 2  Point Ab and t3e required Av 

L 

e2, h2, cu2 = u1 follow as i n  f ig-  
"he correct posit ion along orb i t  1 a t  which t o  burn so as t o  

Optimum AV 

Case 1. - Suppose it i s  desired t o  burn along orb i t  1 a t  a fixed 
p o s i t i o n ' o i n t  1 of f ig .  1 9 )  so that the subsequent t ra jec tory  has a 
fixed perigee. 
an optimization on AT. 

The fl-eedom i n  the specification of t h i s  problem allows 

The perigee point of the new orb i t  l i e s  along the X-axis t o  the 
r igh t  of point Q i n  figure 19 .  
the c i r c l e  of constant e can be traced backwards t o  i t s  point 2, which 
i s  determined. by Xp/X2 = rl/rp,2. 
actual ly  form a curve; t h i s  Curve i s  the l i n e  of r/rp = constant, which 
w a s  meationed i n  a previous section. 
generated as before ( f ig .  8);  they a l so  f o m  a curve. 
i s  the shortest distance from point 1 t o  the  curve of points A .  
optimum path i s  shown as  the so l id  l i n e  i n  figure 19 .  

For each such possible perigee point p, 

The possible points 2 so generated 

The corresponding points A are 

The 
The minimum AV 

The minimum AV i n  magnitude and direction i s  so obtained. In 
addition t o  obtaining the optimum AV, a l l  other possible ways of achiev- 
ing the fixed perigee a r e  shown i n  figure 1 9 .  
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Case 2. - Suppose it i s  desired t o  burn along orb i t  1 at a fixed 
p o s i t m o . i n t  1 of f ig .  20) so that the new orb i t  w i l l  pass through 
r = r*, r = r*. 
new o rb i t  w i l l  reach r = y* along the line of y = $ on the map. 
For each such possible f ina l  point E, the c i r c l e  of constant e can be 
traced backwards t o  i t s  point 2, which i s  determined by XE/Xz = rl/r*. 
The corresponding points A a re  generated as before. "he minimum AV 
can then be seen by inspection) the optimum path i s  shown i n  figure 20 
a s  a so l id  l ine .  

This is  the requirement that a reentr  may give. The 

This case actually includes case 1 i f  y* = 0. 

Case 3. - Suppose it is  desired to  simply change the o rb i t a l  param- 
e te r s  t o  
so as t o  minimize AV. Point 1 lies along the c i r c l e  of e l  ( f ig .  21).  

The 
intersect ion of t h i s  XZ-line and the e2 c i r c l e  determines the corre- 
sponding point 2,  as shown i n  figure 2 1 .  
found a s  before. The minimum AV i s  seen by inspection. 

e2, h2, and the position of burning.along o rb i t  1 can be chosen 

For each such possible point, X2 i s  determined by X2/X1 = h2/hl. 2 2  

The points A and Av's are  

Additional cases. - There are mrw Dossible oDtimization moblems 
" L  .. .. 

that; c m  5e pcsed. For example, among the variables UJhJe; r , T j  
-In, 
iii  : V,y,VR,VR; t there a re  of the order of  - = 45 cases. Even this 

does not exhaust the possible cases as various functions of these vari-  
ables may be considered. 
solved graphically by using the map presented i n  t h i s  report .  
able time requires the curves of constant 

8 ! 2 !  

It is believed that most of these cases can be 
The var i -  

t - $ as discussed before. 

The usual two-body t ra jector ies  are used such tha t  inside the sphere 
of iafluence of a planet the sun's f i e ld  i s  neglected and outside this 
region the p lane t ' s  f i e l d  i s  neglected. On the boundary of t h i s  region, 

where 
- 
VC ,A 

VA 

'h ,A 

velocity of vehicle relative t o  sun on sphere of influence of 
planet A 

velocity of planet A re lat ive t o  sun 

velocity of vehicle relative t o  planet A on sphere of influence 
- 

- o f  planet A 
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The hyperbolic velocity ac ts  l i k e  a AT th rus t  impulse added t o  

the velocity of the planet. 
h,A 

As an example, take the minimilm-en_e_rgdr t r a ~ s f ~ l -  v r b i t s  between 
planets A and B, which a re  i n  c i rcu lar  orb i t s  around the sun. 
is  the map of figure 5 for  t h i s  example. 
represents the orb i t  of p u e t  A, vh,A i s  added t o  the planet as i f  i3  

were a AT. This increment i s  added tangentially, as shown. The coast- 
ing path around the sun i s  path 23, where X2/X3 = r3/rA. The hyper- 
bol ic  velocity a t  planet B i s  negative as shown, corresponding t o  the 
vehicle moving more slowly than planet B. The return t r i p  i s  similar, 
going from points 1 t o  3 and coasting from 3 t o  2 along the same semi- 
c i r c l e  but, below the X-axis, and so forth.  

Figure 22 
Starting a t  point 1, which 

- 
The hyperbolic vel-ocities Vh,A and Tb,B determine the required 

AVts i n  the neighborhood of planets A and B. 
of s tar t ing i n  a c i rcular  s a t e l l i t e  orb i t  and adding, tangentially, a 
AT t o  reach vh,A. Figure 23 i s  the graphical construction for  t h i s  
case. Points 1 and 2 are  points on the map before and a f t e r  thrust. 
Path 23 i s  the coasting path. 
ve r t i ca l  axis (point 3) gives hyperbolic conditions- 
it i s  most convenient t o  use the  c i rc les  of constant 
before (section "Additional Curves fo r  ~ a p " ) ;  O r J  for  
X2 = rV?$3f = 2 4- (rVE,A/GM). This would determine X2 and thus the 
AT required. 
which the vehicle leaves planet A. 

For example, take the case 

The intersect ion of t h i s  c i r c l e  with the 
For t h i s  problem 
r V  /GM as noted 2 

y2 = 0, 

The angie shown, p J  determines the angular direction with 

Some Rendezvous Problems 

Orbit geometry i n  a plane. - The intersect ion of two orb i t s  i s  
defined by 

If ,  on the map of figure 24, points la  and 2a a re  the conditions on 
orb i t s  1 and 2 a t  t h e i r  intersection, then the preceding two conditions 
become 

Y 
-1 
W 
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The tangency of two orb i t s  requires a th i rd  condition: 

( 3 ) :  rl = r2 

If, i n  figure 24, points l b  and 2b a re  the conditions on orb i t s  1 and 2 
a t  t h e i r  tangency, then 

(3): Points 0, lb,  and 2b l i e  on s t ra ight  l ine 

For the intersect ion o r  tangency condition, it would be convenient t o  
have a drawing instrument (or  two-arm protractor) centered a t  the point 
Q W3th two arms having the fixed included angle o2 - ol. 
Sokh arms u n t i l  X2/X1 = hg/hf gives conditions a t  the intersection of 
tvs orbits. 
l ine ,  then the t w o  o rb i t s  are  also tangent zt t5Zs poixt. 

Rotation of 

If', a t  %his condition, points 0, 1, and 2 l i e  on a s t ra ight  

Wansfer orb i t  tangent t o  i n i t i a l  and final orbi ts .  - Consider a 
rendezvous maneuver involving two tangential AV's, Init ial  orb i t  i s  
el, hl, wl; t ransfer  o rb i t  i s  
The conditions of tangency ( f ig .  25) require: 

e2, hZ, 02j final orb i t  i s  e3, h3, a3. 

(3): 

(4)  : 

Angle (2a, Q, 1) = cu2 - 

Points 0, 1, and 2a on s t ra ight  l i n e  

Angle (3, Q, Zb) = cu3 - w2 

Points 0, 2b, and 3 on s t ra ight  l i n e  
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A s  h2 and 0-'2 are  not of in te res t  here, these s i x  conditions reduce 
t o  the following four conditions: 

x2ax3 h3 
'lXZb = 2  hl 

( 3 ) :  Points 0, 1, and 2a on s t ra ight  l i n e  

(4): Points 0, 2b, and 3 on s t ra ight  l i n e  

Starting with point 1, a point 2a, which satisfies condition (3), 
can be t r ied .  This gives angle (3, Q, 2b) by condition (l), and also 
X3/XZb by condition ( 2 ) .  Using the two-arm protractor with included 
angle fixed a t  angle (3, Q, 2b), ro ta te  it u n t i l  points 0, Zb, and 3 l i e  
on a straight l i n e  (condition (4) ) . Then check t o  see i f  x3/XZb i s  
correct. I f  not, t r y  a different  point 2a, and so  for th .  When, by such 
trial and error,  points 2a, 2b, and 3 are determined, the AV's are  
r e a d i l y  found as shown i n  figure 25. 

b 

Transfer o rb i t  of minimum AV. - The t ransfer  orb i t  of the previous 
section considered only tangent ia l  AV's. Suppose the  problem i s  t o  
t ransfer  from an i n i t i a l  o rb i t  of el, hl, u1 t o  a f inal  orb i t  of e3> 
h3, and cu3 using two AV's such that the t o t a l  AV i s  a minimum. 
Referring t o  figure 26, there are two conditions: 

(1) : Angle (2a, Q, 1) + angle (3, Q, Zb) = 0-'3 - w 1  

The solution fo r  minimum AV i s  a t r i a l  and er ror  optimization fo r  

i s  determined by 
points 1 and 2a. 
(3, Q, 2b) i s  determined by condition (l), and 
condition ( 2 ) .  
arm protractor i s  rotated u n t i l  points 2b and 3 sa t i s fy  proper 
condition ( 2 ) .  The t o t a l  AV i s  obtained as i n  figure 26 and noted. 
Various points 2a are t r i e d  u n t i l  minimum AV i s  obtained. Then, 
s t a r t i ng  over with various points 1, optimize with respect t o  various 
points 1. 

Star t ing with any point 1 and any point 2a, angle 
X3/X2b 

With the included angle fixed a t  angle (3, Q, Zb), the two- 
X3/XZb, 
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CONCLUDING REMARKS 

A simple, quick, and prac t ica l  graphical method fo r  t ra jectory 
analysis, applicable t o  many different  types of problems, has been de- 
scribed herein. A summary figure showing the correspondence between 
t ra jectory conditions and the X-Y map used fo r  the graphical construction 
i s  shown i n  figure l (a ) .  The upper par t  of the summary figure shows 
point (1) as the instantaneous condition; the orb i t  shown would be tha t  
for  subsequent coasting. The lower part of the figure shows the  corre- 
sponding point 1 i n  the X-Y plane. Many t ra jectory variables appear 
ra ther  simply i n  this plane. The vaziables e, cp are  the polar co- 
ordinates around the point &. The variables hV/GM, y a re  polar co- 
ordinates around the point 0. The radial  distance on the t ra jectory r 
i s  related t o  X. The subsequent coasting orb i t ,  s ta r t ing  a t  point 1, 
i s  the c i r c l e  on the map of constant e t h a t  goes through the point 1 
as shown i n  figure l ( a ) .  The t rue anomaly cp appears d i rec t ly  on the 
map i n  a realistic manner as shown i n  figure l ( a ) .  The only variable 
tha t  does not appear d i rec t ly  on the map o r  cannot easi ly  be inf'erred 
from it i s  t b e .  F i g r e  16 shows the set of t i m e  l ines  superposed on 
the map. 

The transfer t o  a new crbit. on i,qalsive th-mst was constructed on 
the same map, almost l i ke  r e a l i s t i c  vector addition of velocit ies,  both 
for  planar and nonplanar cases. For continuous thrust, the exact dif- 
f e ren t i a l  equations describing the corresponding path of the operating 
point i n  the X-Y plane were derived. Approximations for  continuous 
thrus t  i n  terms of a ser ies  pulse-coast-pulse-coast-etc. w e r e  shown. 
Another approximation for  the case of almost c i rcular  orb i t s  (e  * 0), 
which simplified the graphical construction even f'urther, was described. 

Because of the many variables that appear on the X-Y GEL;, there are 
many different  ways of entering the map and many variables tha t  can be 
read out simultaneously. 
types of problems t o  be analyzed with the same construction. Examples 
given i n  the report range f r o m  slmple coasting paths t o  optimization of 
AV 

This feature allows a large number of different  

for various cases and t o  several types of rendezvous problems. 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio, August 11, 1959 
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APPENDIX - DERIVATION OF EQUATIONS O F  MOTION . 

I N  COORDINATES OF GRAPHICAL METHOD 

Basic Kinematics 
A A For any un i t  vector, say 

taking the time der ivt t ive of t h i s  equation, $ - e = 0. 
un i t  vector, e and $ are  normal. 

e, of constant length, $ - e = 1. On 
A 

Thus, fo r  any 

? 
A 

Ip - -  4 
CD Let the plane of the paper of figure 27 be the instantaneous r,x 

plane if motion. 
Thus, h i s  normal t o  the r - V plane. A 8 direction i s  defined as 
8 = h X r. Thus e  ̂ l i e s  i n  the r - V plane, normal t o  r, such tha t  
the t r iad  $, 0 ,  h forms an orthogonal right-hand system. 

The vector - -  angular moment2 i s  defined by h = E; X V. 
A - -  A A A  

n~ 

The magnitude of the  angular momentum is obtained f'rom the pre- 
ceding definit ion of h as follows: 

* 

n - ~  
h -  h * h =  h * ( T X V )  = r ( v  - e^) 

The components of the velocity are  obtained from the def ini t ion 
- - n. A V = r = rr + rr 

- -  n The vector r thus l i e s  i n  the r - V plane; as it i s  a l so  normal t o  E ,  
it must l i e  i n  the 0 direction. Thus, r̂  = 80, which a l so  serves as 
the  definit ion for de (or  e ) ,  as  shown i n  figure 27.  The expression 
fo r  velocity becomes 

A * A  

The magnitude of angular momentum i s  

The angle 8 is  tha t  angle swept out by the radius vector along 
the trajectory.  For general nonplanar motion, 0 would be the accumu- 
l a t ed  angle on the curved surface generated by the radius vector. 
equation ( A Z ) ,  it i s  evident tha t  d0/dt 2 0, so that d0 (or 0 )  can 
be used as the independent variable of the motion, replacing the usual 
independent variable d t  (or t) .  The exception i s  the case of r ad ia l  
motion on the trajectory,  where 

From - 

- 
de/& = 0 .  
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A A -  To get the time derivatives of h, h, and 8, h = at ( T X 7 ) d X + ,  
*A  A 
hh + hh = E; X 7. or  

h, 8, and $ in turn, 
On taking the scalar product of this equation with 

A A  

* A  ' A  

h = h - (F X 7 )  = r(v - 8 )  

h ( t  E )  = 8 (E; x V) = - r (V - i;) 

h(% r^) = r (F X e) = 0 

(A3 1 
A 

A 

and, thus, 

A A  
From 8 = h X C ,  

The components of the acceleration are obtained L3?~a the time de- 
-,- r iva t ive  -,.* of the f irst  of equations ( A l ) .  

* \ 9  / n o \  
- 0 -  A i = (E' - rij2)F + (Z + zre)e  + (i - njn ) 

n 
where it i s  noted tha t  the magnitude of the 8 component i s  i/r. 

Kinematics i n  X-Y Plane 

The X and Y eoorci_nates of the graph used i n  the methods of 
this report  can be defined as follows: 

Differentiation of these equations, using equations (AZ) , ( A 3 )  , and 
(A6) ,  gives 
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where 

and 

The preceding three equations give the  path i n  the  X-Y plane with 
8 as the independent variable or parameter. Elapsed time d t  (or t )  
i s  given by "=S de 3 4  1 2  

Three-Dimensional Kinematics 

To r e l a t e  the position of t he  vehicle i n  space, consider tke con- 
A A ventional geometry (ref.  3) as shown i n  f igure  l ( b ) >  where 

fixed directions.  The angle between z and i s  the  inclinationA i. 
The uni t  vector direction n i s  along the  intersection of the x, y 
plane and the  
Analytically, 

x, y, z are 
A 

A A 

9, 9 plane, that is ,  t he  direction of the  ascending node. 

A A  z * h =  cos i 

A A A  z X h = n s i n  i, 0 < i < 180' 

The angles R and o) + cp are defined by 

A A  x n = cos R, 0 < R < 360' 

* $ = COS (CU + ~ p ) ,  0 < + cp < 360' 

On taking the time derivatives of these four equations, first note 
t h a t  

a2 h s i n  i - = (.^ X ^n)r sin(w + cp)(p * c)  d t  

Then, the  r a t e s  of change of w, R, and i are  

d 
a t  
h s i n  i - d R = r sin(w + cp)(i * c )  

h - = r cos(u, + cp)(G * c )  

h s i n  i - (w + cp - 6)  = -r sin(w + cp)cos i(? c )  
d t  

d i  
d t  
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On using 
become 

de as the  independent variable, t h e  preceding three equations 

d 
de sin i 

sin(cu + Cp) (i g "> X - - R =  

- A  x - d i  = cos(u) + qo) 
de 

Complete Set of Differential  Equations of Motion 

General case. - Equations (A7)  t o  ( A 1 3 )  are a complete set of d i f -  
f e r e n t i a l  equations for  the  motion i n  terms of  t he  variables 
t, ijj -k cp, R, and i as flulctions o f  8 with 7 r ,̂ v - e^, and 7 h 
2 s  the  inputs.  
because the  independent variable 6 Is, i n  general, merely a parameter 
of t h e  iiiotim. 

X, Y2 g, 
A 

There are seven eqtlations, rsther than the  usual six,  

From the def ini t ion of X and Y, 

vhich i s  the usual def ini t ion of the  eccentr ic i ty  e. Also, 

1 i e cos cp hz x=-- m -  

by the  usual def ini t ion of the t rue  anomaly 
have the  d i f f e ren t i a l  equations for e and rp. These are: 

cp. It may be convenient t o  

e - -  de de - Y[@) + 11 +p + 2(x - .@) 

Inverse-square central  gravitational f ield.  - A l l  t he  equations i n  
c t h i s  appendix vp t o  t h i s  point a r e  quite general; expressions fo r  the  

acceleration 7 and the  gravitational f i e l d  have not yet  been specified. 
For the  case of an inverse-square central  gravi ta t ional  f i e ld ,  the 
acceleration i s  . 

A - -  
V = F/m - gr  
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- 
where F i s  vector th rus t  and m i s  mass of vehicle. Then 

A -  - 
;.r - = - -  F - F  

w e. 
0 

t 
I 

tl 

The seven d i f f e ren t i a l  equations of motion (eqs. (A7) t o  ( A 1 3 ) )  then 
become 

_ -  dx de - -Y + 2 (Gn) 
- =  dY (x - 1) + x  '(F - 3) + (F * ?) 
de mg mg 

For convenience, the d i f f e ren t i a l  equations fo r  e and cp - 0 can be 
writ ten as follows: 

For a coasting path, and cc, are constant, and = A0 = angle 
For the  swept out by radius vector i n  the  plane of motion ( f i g .  l(b)). 

case of impulsive thrus t  i n  the plane of motion, 
A(u -t ~ p )  = 0; thus, hu = -AT. 

i s  constant and 
c 
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Apogee 

- -  
Instantaneous r,V plane 

Y 

-\Corresponding condition 
on X-Y map \ 

Perigee 

+------x 

L 

Corresponding X-Y map 

(a) Summary figure illustrating correspondence between trajectory 
conditions and points in coordinate system of graphical method. 

. 

Figure 1. - Mapping of trajectory conditions into X-Y plane and the space orienta- 
tion, showing major symbols used in report. 
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plane  

A A  
z - h =  c o s i  
z x fr = n s i n  i 

x n =  c o s 0  

n r = cos(cu + c p )  

A A 

A A  

A 6  

(b) Coordinate system used f o r  space o r i e n t a t i o n .  

F igure  1. - Concluded. Mapping of t r a j e c t o r y  condi t ions  i n t o  X-Y 
p lane  and t h e  space o r i en ta t ion ,  showing major symbols used i n  
r e p o r t .  
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Figure 2 .  - Geometry i n  X-Y plane of graphical method f o r  
eccent r ic i ty ,  e ,  and t r u e  anomly, cp .  

Figure 3. - Polar coordinate system formed by t r a j ec to ry  var iab les  
e and cp oil X-Y plane of graphica l  method. 
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Figure 4. - Two polar coordinates systems formed by trajectory 
variables e, cp and hV/GN, y sugerposed on X-Y plane of 
graphical method. 
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Y 
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. 

M 
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Figure 5. - Detailed g r i d  l i n e s  f o r  t r a j e c t o r y  variables i n  X-Y map 
of graphical method. 
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cn 
lc 

Y w 

X 

Figure 6. - Example of coasting trajectory. 

Y 

y for im- / 

X 

Figure 7. - Example of entering X-Y map for case of in- 
jecting satellite into orbit with e = 0.25 arid 
y- = 10° at burnout; illustrating double-valued solu- 
tion and a l so  possibility of specifying impossible 
conditions. 
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Figure 8. - Construction for impulsive thrust, planar case. 
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i 

Lo 
I 
u u 

Y 

Lines IA and ZB a r e  p r a i i e i  

1 

X 

Figure 9.  - Relat ion between forward and backward impulsive thrust. 

,-Point 2 condition 

- 
Figure 10. - Trajec tor ies  resu i t ing  from L V ' s  giving 

mirror  image poin ts  A on map ( f i g s .  8 and 9 ) ,  d i r e c -  
t i o n  r e v e r s a l .  
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. 
Y 

I 

hl x l l  
-(rn * I GM 

n 
r( in) 

n ha J 

/ 
/ 

\ \ I  
\ IXA 

I 
I 

I 
/ 

X 

X Z  

X 

+ 
CD = hl/GM (total component of impulse in horizontal plane) 
1E = hl/GM (total component of impulse in original plane of motion) 
+ 

xi = x1x2 

Figure 11. - Construction for impulsive thrust, nonplanar case. 
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V u 
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F i g u r e  1 2 .  - Construcciol: ‘-13e.l in avrti-oxhzti on f o r  _ _  
cont inuous t h r u s t .  

I 

Approximate p u l s e - c o a s t - e t c .  

0 1  2 3 4 5 

Figure  13. - Typica l  continuous t h r u s t  cu rve  and approximation used i n  
g r a p h i c a l  method. 
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A 2  

Figure 15. - Construction for impulsive thrust, almost c i r -  
cular orbits, e -P 0. 
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Figure 16. - Time lines on map; lines of constant 

X 
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Y 

Figure 1 7 .  - Four conditions along a coasting path,  
used t o  i l l u s t r a t e  ca lcu la t ion  of elapsed t ime. 

& 

e I 

Figure 18. - Examples of t r a n s f e r s  t o  new o r b i t  
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'rx 
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Figure 19. - Example of optimum AV, case 1; Impulsive thrust 
applied at definite position along orbit 1 so as to fix peri- 
gee of orbit 2 at rp,2. 

Y 

xE/x2 = rl/r* 

Figure 20. - Example of optimum AV, case 2; impulsive thrust 
applied at definite position along orbit 1 so as to reenter 
at y = y* when r = r*. 

. 
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8 

Figure 21. - Example of optimum AV, case 3; impulsive 
t h r u s t  app l i ed  a t  any p o s i t i o n  along o r b i t  1 so  as t o  
change o r b i t a l  parameters from el, hl t o  e2, h2. 
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A 

Figure  22 .  - Example of i n t e r p l a n e t a r y  t r i p ;  hyperbol ic  
v e l o c i t i e s  r equ i r ed  f o r  minimum-energy t r a n s f e r  o r b i t s .  

2 I 

Figure  23 .  - Example of i n t e r p l a n e t a r y  t r i p ;  t a n g e n t i a l  impulsive 
t h r u s t  r equ i r ed  for escape  wi th  s p e c i f i e d  hyperbol ic  v e l o c i t y ,  
Vh, s t a r t i n g  from c i r c u l a r  s a t e l l i t e  o r b i t  1. 
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Figure 24 .  - I l l u s t r a t i o n  of condi t ions  for i n t e r s e c t i o n  and 
tangency of two o r b i t s .  
o r b i t s  1 and 2 a t  i n t e r s e c t i o n ;  po in t s  lb and 2b are con- 
d i t i o n s  on o r b i t s  1 and 2 a t  tangency. 

Points  la  and Z a  are condi t ions on 
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<lj Angle (2a ,Q , l )  + ang le  (3,Q,Zb) = w3-w1  

( 2 )  X2aX3/XlxZb = h3/hl 2 2  

Y (3)  Po in t s  0, 1, and 2a  l i e  on s t r a i g h t  l i n e  
(4) Poin ts  0, 2b, and 3 l i e  on s t r a i g h t  l i n e  

Figure 25. - Example of a rendezvous problem where t r a n s f e r  o r b i t  2 
is  tangent  t o  both i n i t i a l  o r b i t  1 and f i n a l  o r b i t  3. 
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(1) Angle (2a,Q,1)  + angle  (3,Q,2b) = 03 - w1 
2 2  

( 2 )  X2aX3/X1XZb = h3/hl 

Figure 26 .  - Example of rendezvous problem where o r b i t a l  param- 
eters  el, hl, w1 are changed t o  e3, h3, cu3 wi th  two i m -  
pu l s ive  t h r u s t s  so  that t o t a l  AV i s  a minimum. 
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- -  
r - V plane 
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fi ( o u t  of paper )  c 
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Figure 2 7 .  - Instantaneous p lane  of motion. 

NASA - Langley Field, Va. E-479 


